################################################################################ # # Pi-Pico-ExpressionPedal2Midi # # using USB midi. Midi messages are sent simultaneoulsy to UART1 and USB. # Set desired midi channel, change control, and maximum and minimum values # # Upon run/power on, move expresson pedal from maximum to minimum to calibrate # your pedal. CC commands will immediately start sending once calibrated. # # Ashley Strahle # https://github.com/ashstrahle # ################################################################################ import sys import struct import time import board import busio import analogio import digitalio import math import usb_midi import adafruit_midi from adafruit_midi.timing_clock import TimingClock from adafruit_midi.note_on import NoteOn from adafruit_midi.note_off import NoteOff from adafruit_midi.pitch_bend import PitchBend from adafruit_midi.control_change import ControlChange # Midi output settings midi_channel = 1 # Target midi channel to write to cc = 1 # Target Control Change number - Expression Pedal cc_min = 0 # Minimum desired CC output - 0 - 127 cc_max = 127 # Maximum desired CC output - 0 - 127 # Expression pedal settings logarithmic = True # Expression pedal logarithmic or linear. Set to False for linear log_base = 100 # This value changes the feel of the log curve # Required percentage of expression pedal movement for calibration exp_pedal_calibration_percent = 80 # 0 - 100 # Devices led = digitalio.DigitalInOut(board.LED) led.direction = digitalio.Direction.OUTPUT exp = analogio.AnalogIn(board.GP26) # Expression pedal device on pin 31 uart = busio.UART(tx=board.GP4, rx=board.GP5, baudrate=31250, timeout=0.001) # UART Midi device on pin 6 uart_midi = adafruit_midi.MIDI(midi_out=uart, out_channel=midi_channel - 1) usb_midi = adafruit_midi.MIDI( midi_out=usb_midi.ports[1], out_channel=midi_channel - 1) # This function translates the expression pedal value to the equivalent CC value def translate(exp_val): if logarithmic: scaled_val = math.log(exp_val, log_base) # Apply logarithmic scaling return int((((scaled_val - math.log(exp_min, log_base)) * (cc_max - cc_min)) / (math.log(exp_max, log_base) - math.log(exp_min, log_base))) + cc_min) else: return int((((exp_val - exp_min) * (cc_max - cc_min)) / (exp_max - exp_min)) + cc_min) # Initialise variables offset = 1e-6 # Small offset to avoid log(0) error # Set these to reverse thresholds to enable calibration exp_min = 65535 exp_max = offset exp_calibration_threshold = int(abs(exp_max - exp_min) * exp_pedal_calibration_percent / 100) cc_ratio = 1/(cc_max - cc_min) # Calculate number of possible CC values exp_previous = exp.value if exp_previous == 0: exp_previous = offset # main loop while True: exp_current = exp.value if exp_current == 0: exp_current = offset # Only process if the change ratio is greater than the possible number of CC values if abs(exp_current - exp_previous) / exp_max > cc_ratio: if exp_current > exp_max: exp_max = exp_current elif exp_current < exp_min: exp_min = exp_current exp_previous = exp_current # Only send midi when calibration threshold has been reached if exp_max - exp_min > exp_calibration_threshold: led.value = True # Turn led on cc_val = translate(exp_current) uart_midi.send(ControlChange(cc, cc_val)) usb_midi.send(ControlChange(cc, cc_val)) led.value = False # Turn led off print("Writing Midi Channel: {}, ControlChange: {}, Value {}. Exp Pedal: cur: {}, min: {}, max: {}".format( midi_channel, cc, cc_val, exp_current, exp_min, exp_max))